Pluronic: A “Cool” Biomaterial for Bioprinters

October 16, 2018

Please reload

Pluronic: A “Cool” Biomaterial for Bioprinters

May 23, 2017


When using the r3bEL bioprinter to print cell scaffolds, Pluronic F-127 been one of our favored biomaterials. Pluronic, also known as Poloxamer 407, is a hydrophilic non-ionic surfactant.[1] It is also a thermo-reversible hydrogel, meaning that it can change from liquid to solid state depending on the temperature, and in this case, it is a liquid at cold temperatures and a solid at room temperature.  


Pluronic is widely used in multiple fields due to its surfactant properties which allow for a lower surface tension between lipids and liquids. In the cosmetics industry, it is used in dissolving oily ingredients in water. Pluronic acts as a cleaning agent to safely remove lipids from the lens films in contacts solution. Pluronic is also quite popular in pharmaceutical applications; it provides pharmacists with an excellent topical drug delivery system with a multitude of potential uses and is highly compatible with a large variety of substances. PF-127’s ease of use and steady drug release characteristics demonstrated in both in vivo and in vitro experiments have proven it to be a robust biomaterial for many biomedical applications.   


Pluronic is a stable medium as a bioink in 3D bioprinting applications. Pluronic by itself does not allow for sustained long term cell culture growth. However, there are various methods that can increase the biocompatibility and stabilize pluronic gels such as nanostructuring and UV crosslinking.[2] The nanostructured hydrogels have a much higher cell viability with the desirable sets of properties, allowing for the maintenance of cell culture growth. The flexibility of Pluronic’s bioink use enables an easy conversion from introductory cell culture growth to bioindustry applications.[3] 


Pluronic’s unique characteristics have made it a Pluronic’s suitability for cell culture brings great value to bioscience education and research. It dissolves in water, making it easy to dispose of as well. Till today, the applications of Pluronic F-127 are still being explored to unlock the full utilization potential.  




[1] Stanford University Medical Center (28 August 2011). "Sutureless method for joining blood vessels invented". ScienceDaily. 


[2] Escobar-Chávez, J. J., López-Cervantes, M., Naïk, A., Kalia, Y. N., Quintanar-Guerrero, D., & Ganem-Quintanar, A. (n.d.). Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. PubMed 


[3] Müller, M., Becher, J., Schnabelrauch, M., & Zenobi-Wong, M. (2015, August 11). Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting. PubMed

Please reload

Copyright 2018 SE3D Inc. All rights reserved.

Privacy Policy

  • Grey Facebook Icon
  • Grey Twitter Icon
  • Grey Instagram Icon
  • Grey LinkedIn Icon

Santa Clara, CA, United States